Mesenchymal stem cell mechanics from the attached to the suspended state.
نویسندگان
چکیده
Human mesenchymal stem cells (hMSCs) are therapeutically useful cells that are typically expanded in vitro on stiff substrata before reimplantation. Here we explore MSC mechanical and structural changes via atomic force microscopy and optical stretching during extended passaging, and we demonstrate that cytoskeletal organization and mechanical stiffness of attached MSC populations are strongly modulated over >15 population doublings in vitro. Cytoskeletal actin networks exhibit significant coarsening, attendant with decreasing average mechanical compliance and differentiation potential of these cells, although expression of molecular surface markers does not significantly decline. These mechanical changes are not observed in the suspended state, indicating that the changes manifest themselves as alterations in stress fiber arrangement rather than cortical cytoskeleton arrangement. Additionally, optical stretching is capable of investigating a previously unquantified structural transition: remodeling-induced stiffening over tens of minutes after adherent cells are suspended. Finally, we find that optically stretched hMSCs exhibit power-law rheology during both loading and recovery; this evidence appears to be the first to originate from a biophysical measurement technique not involving cell-probe or cell-substratum contact. Together, these quantitative assessments of attached and suspended MSCs define the extremes of the extracellular environment while probing intracellular mechanisms that contribute to cell mechanical response.
منابع مشابه
Co-Transplantation of VEGF-Expressing Human Embryonic Stem Cell Derived Mesenchymal Stem Cells to Enhance Islet Revascularization in Diabetic Nude Mice
Background: Pancreatic islet transplantation has emerged as a promising treatment for type I diabetes. However, its efficacy is severely hampered due to poor islet engraftment and revascularization, which have been resulted to partially loss of transplanted islets. It has been shown that local delivery of vascular endothelial growth factor (VEGF) could accelerate transplanted islet revasculari...
متن کاملMesenchymal Stem Cell Purification from the Articular Cartilage Cell Culture
Objective Articular cartilage as an avascular skeletal tissue possesses limited capacity to heal. On the other hand, it is believed that the regeneration capacity of each tissue is largely related to its stem cell contents. Little is known about the presence of mesenchymal stem cells in articular cartilage tissue. This subject is investigated in the present study. Materials and Methods Artic...
متن کاملHuman Mesenchymal Stem Cells and Their, Clinical Aapplication
There are two main categories for stem cells a cording to their origin: Embryonic Stem Cells and Adult Stem Cell. Mesenchymal stem cell, supporting hematopoetic stem cells in bone marrow, can regenerate tissues such as bone, cartilage, muscle, tendon and fatty tissue. These cells were recognized for the first time by Friedenstein and Petrokova who could isolate theme from rat bone marrow.Mesenc...
متن کاملMesenchymal Stem Cells Derived from Rat Epicardial Versus Epididymal Adipose Tissue
Objective(s) Some investigation has indicated that adipose-derived stem cells possess different surface epitopes and differentiation potential according to the localization of fat pad from which the cells were derived. In the present study proliferation capacity and aging of such cells were explored. Materials and Methods Adherent cells were isolated from the collagenase digests of adipose tiss...
متن کاملMatrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells
Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 99 8 شماره
صفحات -
تاریخ انتشار 2010